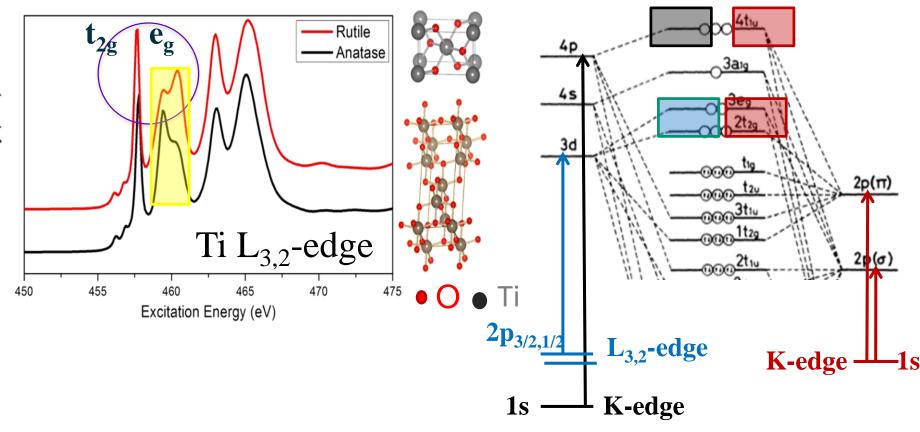
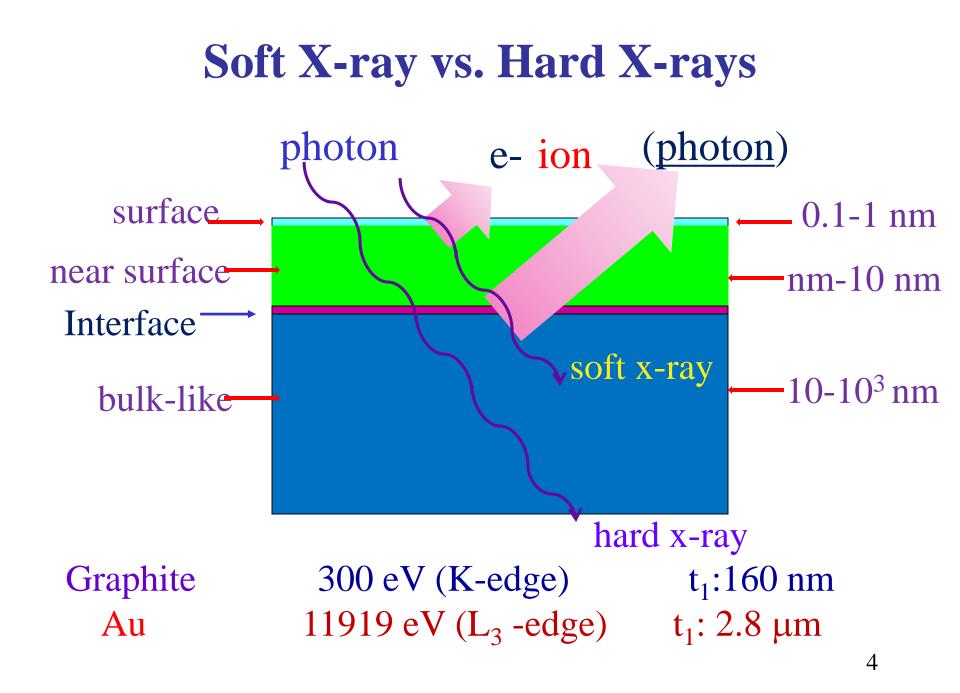


What is the origin of the shift? Oxidation state, ionicity!

Information that XAS provides

Hybridization: sp³ and sp² hybridized BN


X.-T. Zhou, Anal. Chem. (2006) 78, 6314


Information that XAS provides

Local symmetry: anatase and rutile TiO2

Ti Molecular Orbitals

Liu et al. J. Phys. Chem. C (2010) 114, 21353

Soft X-ray energy and core level threshold (binding energy) of element

Table 1-1. Electron binding energies, in electron volts, for the elen

Element	K 1s	L ₁ 2s	$L_2 2p_{1/2}$	L ₃ 2p _{3/2}	M1 3s	$M_2 3p_{1/2}$	M3 3p3/2	M ₄ 3d
1 H	13.6							
2 He	24.6*							
3 Li	54.7*							
4 Be	111.5*					oft `	V_r9	ay (< ~5000eV)
5 B	188*				U D		(1-1 6	
6 C	284.2*							
7 N	409.9*	37.3*						
8 O	543.1*	41.6*				Soft	V r	ay is associated
9 F	696.7*					DUI	. Λ-ι	ay is associated
10 Ne	870.2*	48.5*	21.7*	21.6*		TTTI+1	doo	n ann lavala of
11 Na	1070.8†	63.5†	30.65	30.81		WIU	i uee	p core levels of
12 Mg	1303.0†	88.7	49.78	49.50		1	1.	
13 Al	1559.6	117.8	72.95	72.55		IOW	z ele	ements
14 Si	1839	149.7*b	99.82	99.42				
15 P	2145.5	189*	136*	135*				
16 S	2472	230.9	163.6*	162.5*				
17 Cl	2822.4	270*	202*	200*				
18 Ar	3205.9*	326.3*	250.6†	248.4*	29.3*	15.9*	15.7*	
19 K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*	
20 Ca	4038.5*	438.4†	349.7†	346.2†	44.3 †	25.4†	25.4†	
21 Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*	
22 Ti	4966	560.9†	460.2†	453.8†	58.7†	32.6†	32.6†	
								5

Soft vs Hard X-rays and core level threshold (binding energy) of element

Table 1-1.	Electron	binding	energies	(continued).
------------	----------	---------	----------	--------------

Element	K 1s	L ₁ 2s	$L_2 2p_{1/2}$	L ₃ 2p _{3/2}	M ₁ 3s	M ₂ 3p _{1/2}	M ₃ 3p _{3/2}	M4 3d3/2	M5 3d5/2	N ₁ 4s	N ₂ 4p	
23 V	5465	626.7†	519.8†	512.1†	66.3†	37.2†	37.2†					
24 Cr	5989	696.0†	583.8†	574.1†	74.1†	42.2†	42.2†	Sof	t X-ra	v is a	associ	ated
25 Mn	6539	769.1†	649.9†	638.7†	82.3†	47.2†	47.2†			•		
26 Fe	7112	844.6†	719.9†	706.8†	91.3†	52.7†	52.7†	with	n shal	low	core]	levels
27 Co	7709	925.1†	793.2†	778.1†	101.0†	58.9†	59.9†					
28 Ni	8333	1008.6†	870.0†	852.7†	110.8†	68.0†	66.2†	of i	nterm	ediat	e z el	emen
29 Cu	8979	1096.7†	952.3†	932.7	122.5†	77.3†	75.1†					
30 Zn	9659	1196.2*	1044.9*	1021.8*	139.8*	91.4*	88.6*	10.2*	10.1*			
31 Ga	10367	1299.0*b	1143.2†	1116.4†	159.5†	103.5†	100.0†	18.7†	18.7†			
32 Ge	11103	1414.6*b	1248.1*b	1217.0*b	180.1*	124.9*	120.8*	29.8	29.2			
33 As	11867	1527.0*b	1359.1*b	1323.6*b	204.7*	146.2*	141.2*	41.7*	41.7*			
34 Se	12658	1652.0*b	1474.3*b	1433.9*b	229.6*	166.5*	160.7*	55.5*	54.6*			
35 Br	13474	1782*	1596*	1550*	257*	189*	182*	70*	69*			
36 Kr	14326	1921	1730.9*	1678.4*	292.8*	222.2*	214.4	95.0*	93.8*	27.5*	14.1*	
37 Rb	15200	2065	1864	1804	326.7*	248.7*	239.1*	113.0*	112*	30.5*	16.3*	
38 Sr	16105	2216	2007	1940	358.7†	280.3†	270.0†	136.0†	134.2†	38.9†	21.3	
39 Y	17038	2373	2156	2080	392.0*b	310.6*	298.8*	157.7†	155.8†	43.8*	24.4*	
40 Zr	17998	2532	2307	2223	430.3†	343.5†	329.8†	181.1†	178.8†	50.6†	28.5†	
41 Nb	18986	2698	2465	2371	466.6†	376.1†	360.6†	205.0†	202.3†	56.4†	32.6†	
42 Mo	20000	2866	2625	2520	506.3†	411.6†	394.0†	231.1†	227.9†	63.2†	37.6†	
43 Tc	21044	3043	2793	2677	544*	447.6	417.7	257.6	253.9*	69.5*	42.3*	
44 Ru	22117	3224	2967	2838	586.1*	483.5†	461.4†	284.2†	280.0†	75.0†	46.3†	
45 Rh	23220	3412	3146	3004	628.1†	521.3†	496.5†	311.9†	307.2†	81.4*b	50.5†	
46 Pd	24350	3604	3330	3173	671.6†	559.9†	532.3†	340.5†	335.2†	87.1*b	55.7†a	
47 Ag	25514	3806	3524	3351	719.0†	603.8†	573.0†	374.0†	368.3	97.0†	63.7†	6

Soft X-ray is associated with **shallow core levels** of high z elements

Table 1-1.	Electron	binding	energies	(continued).

Element	K 1s	L ₁ 2s	$L_2 2p_{1/2}$	L ₃ 2p _{3/2}	M ₁ 3s	M ₂ 3p _{1/2}	M3 3p3/2	$M_4 3d_{3/2}$	M5 3d5/2	N ₁ 4s	N ₂ 4p _{1/2}	N ₃ 4p _{3/2}
48 Cd	26711	4018	3727	3538	772.0†	652.6†	618.4†	411.9†	405.2†	109.8†	63.9†a	63.9†a
49 In	27940	4238	3938	3730	827.2†	703.2†	665.3†	451.4†	443.9†	122.9†	73.5†a	73.5†a
50 Sn	29200	4465	4156	3929	884.7†	756.5†	714.6†	493.2†	484.9†	137.1†	83.6†a	83.6†a
51 Sb	30491	4698	4380	4132	946†	812.7†	766.4†	537.5†	528.2†	153.2†	95.6†a	95.6†a
52 Te	31814	4939	4612	4341	1006†	870.8†	820.0†	583.4†	573.0†	169.4†	103.3†a	103.3†a
53 I	33169	5188	4852	4557	1072*	931*	875*	630.8	619.3	186*	123*	123*
54 Xe	34561	5453	5107	4786	1148.7*	1002.1*	940.6*	689.0*	676.4*	213.2*	146.7	145.5*
55 Cs	35985	5714	5359	5012	1211*b	1071*	1003*	740.5*	726.6*	232.3*	172.4*	161.3*
56 Ba	37441	5989	5624	5247	1293*b	1137*b	1063*b	795.7†	780.5*	253.5†	192	178.6†
57 La	38925	6266	5891	5483	1362*b	1209*b	1 128* b	853*	836*	274.7*	205.8	196.0*
58 Ce	40443	6549	6164	5723	1436*b	1274*b	1187*b	902.4*	883.8*	291.0*	223.2	206.5*
59 Pr	41991	6835	6440	5964	1511	1337	1242	948.3*	928.8*	304.5	236.3	217.6
60 Nd	43569	7126	6722	6208	1575	1403	1297	1003.3*	980.4*	319.2*	243.3	224.6
61 Pm	45184	7428	7013	6459	_	1471	1357	1052	1027		242	242
62 Sm	46834	7737	7312	6716	1723	1541	1420	1110.9*	1083.4*	347.2*	265.6	247.4
63 Eu	48519	8052	7617	6977	1800	1614	1481	1158.6*	1127.5*	360	284	257
64 Gd	50239	8376	7930	7243	1881	1688	1544	1221.9*	1189.6*	378.6*	286	271
65 Tb	51996	8708	8252	7514	1968	1768	1611	1276.9*	1241.1*	396.0*	322.4*	284.1*
66 Dy	53789	9046	8581	7790	2047	1842	1676	1333	1292.6*	414.2*	333.5*	293.2*
67 Ho	55618	9394	8918	8071	2128	1923	1741	1392	1351	432.4*	343.5	308.2*
68 Er	57486	9751	9264	8358	2207	2006	1812	1453	1409	449.8*	366.2	320.2*
69 Tm	59390	10116	9617	8648	2307	2090	1885	1515	1468	470.9*	385.9*	332.6*
70 Yb	61332	10486	9978	8944	2398	2173	1950	1576	1528	480.5*	388.7*	339.7*

What edge can soft X-ray probe ?

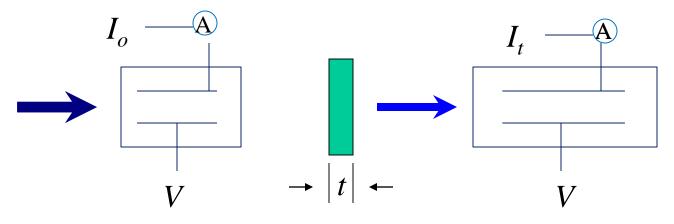
- Li K-edge (54.7 eV) to ~ Ti K-edge (~5 keV)
- Soft X-ray can access many *shallow core level* of many important elements,
 K-edge of C, N, O;
 - L, K-edges of Al, Si, S, P, Cl,
 - L-edge of 3d metals, L, M-edges of 4d metals, L-edge of Ga, Ge, As, Se and Cd, In, Sn, Sb, Te and
 - $N_{4,5}$ edge (giant resonance) of 4f rare-earths

Soft X-ray vs. hard X-ray

Soft X-ray: shallow penetration depth

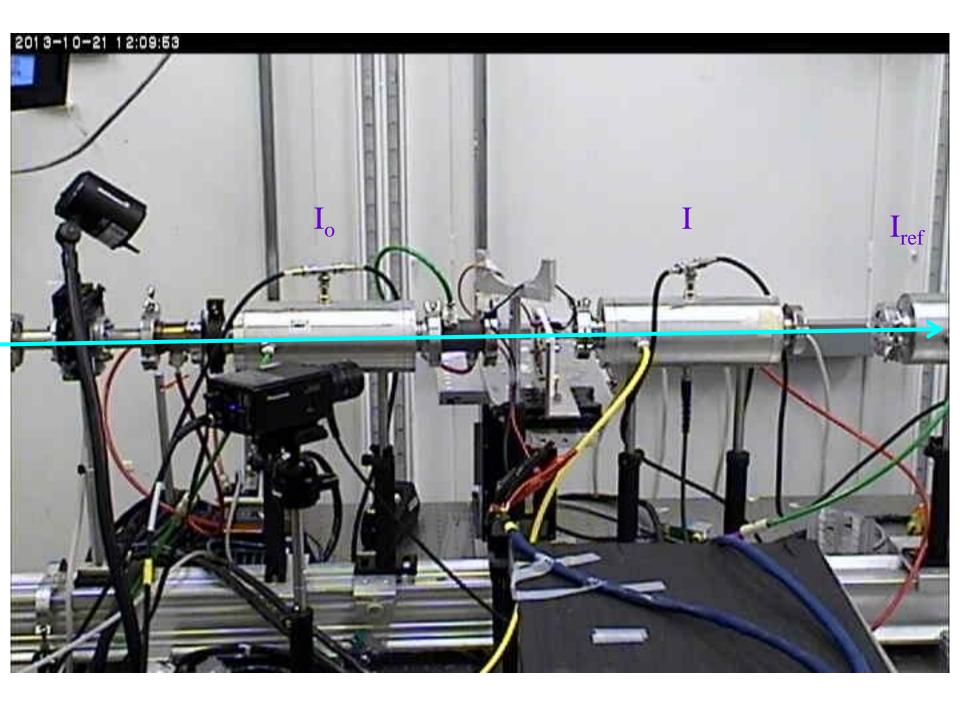
- Measurements in transmission is difficult or undesirable
- Yield is normally used !

One absorption length ($\mu t_1 = 1$ or $t_1 = 1/\mu$) Attenuation length

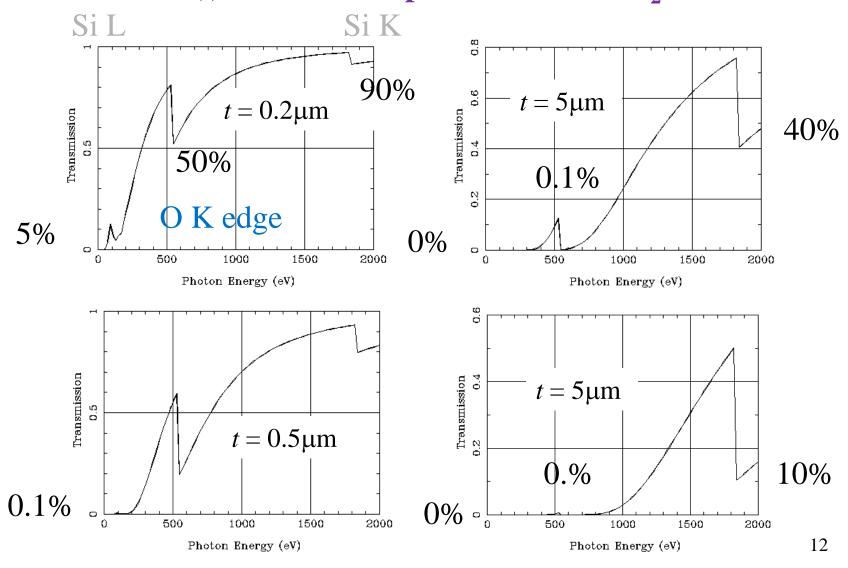

Element	density(g/c	m^3) hv (eV) mass	as abs (cm^2/g)	$t_1(\mu m)$
Si	2.33	1840 (K-edge)	3.32 ×103	1.3
		100 (L-edge)	8.60 ×104	0.05
Graphite	1.58 300	(K-edge)	4.02 ×104	0.16

X-ray absorption coefficient and the one-absorption length

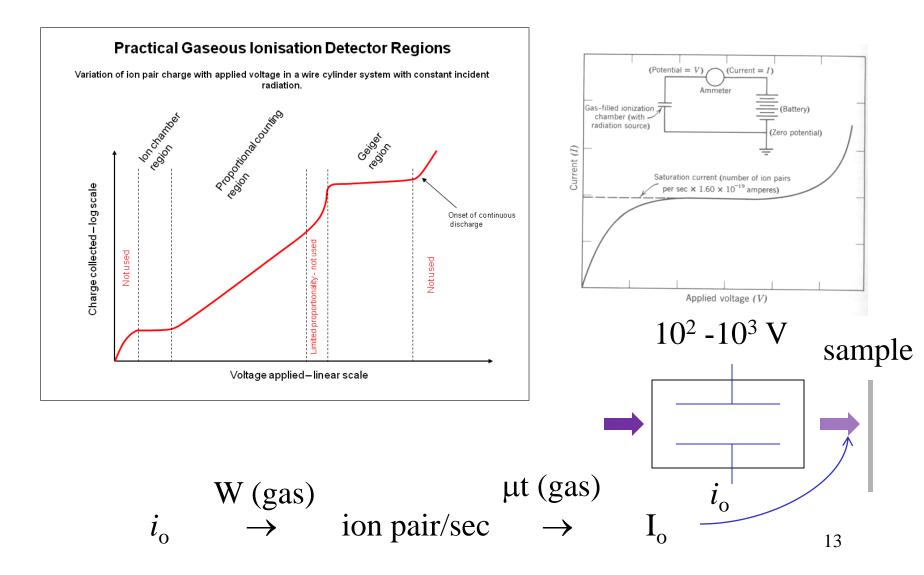
• The x-ray absorption coefficient μ (cm⁻¹)


 $\mu = \sigma \rho; \rho (g/cm^3), \sigma (cm^2/g);$

Beer- Lambert law: Transmission measurements


 $I_t = I_o e^{-\mu t} \quad or \quad \mu t = \ln(I_o / I_t)$

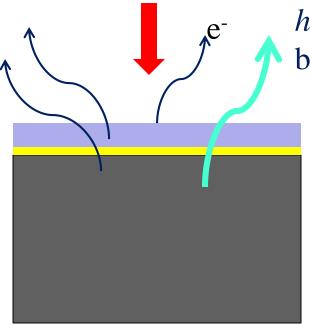
Ionization chamber: Can be used to measure absolute photon flux



Experimental considerations

(transmission is not always practical)(i) Suitable sample thickness: SiO₂

How does an ion chamber work in X-ray measurements



W and G values of gases

- W value: energy required to produce one ion pair.
- For nitrogen, W = 35.8 eV/ ion pair
- **G values**: number of ion pairs produced by 100eV of energy absorbed; e.g. 100 eV may come from one 100eV photon of
- 5 20 eV photon or 0.01 10,000 eV photon.

These values are reasonably constant at hard Xray and gamma ray energies but varies for soft Xray photons. Experimental considerations (transmission is not always practical) (ii) Specimen geometry Thin over layer/multilayer film

hv (optical photons) can be surface and bulk sensitive depending on the origin of the luminescence

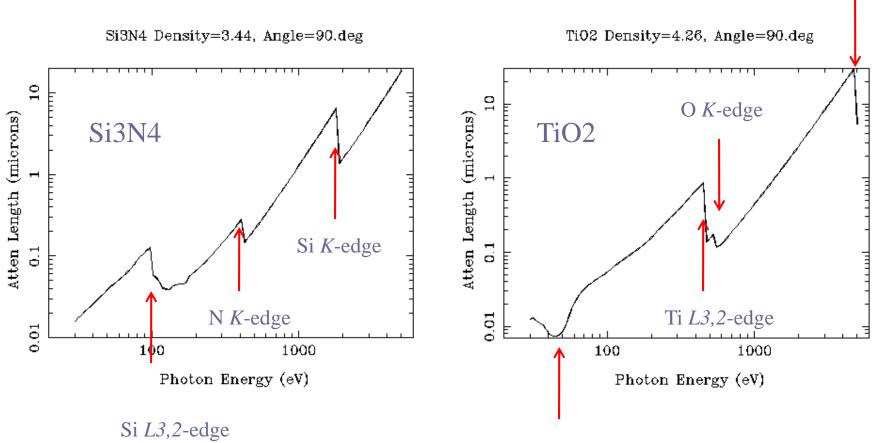
hv (X-ray fluorescence) bulk sensitive

Why soft x-rays (~40 - 5000 eV)?

Narrow inherent linewidths (core hole lifetime). Decay often involves the shallow core and valence electrons.

Shallow penetration depth: $t_1(1/e \text{ attenuation})$ is ~10 – 10³ nm. E.g. $t_1 \sim 60$ nm at Si L-edge

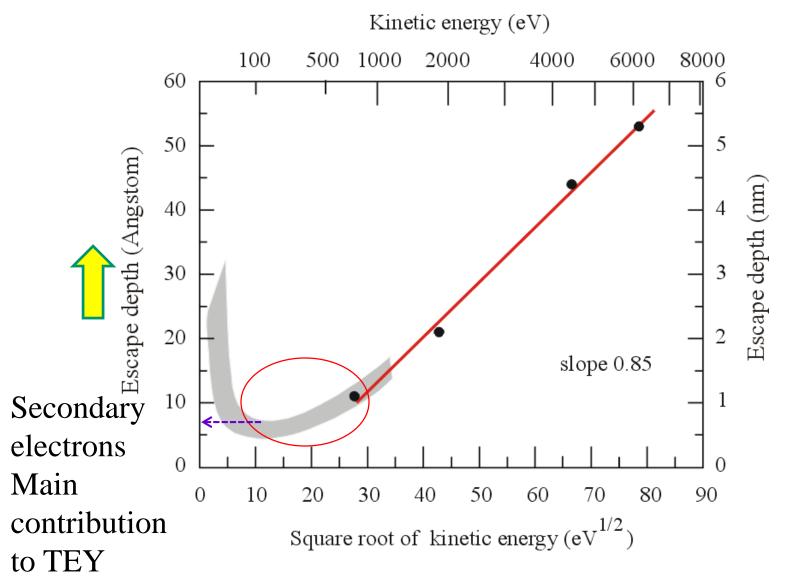
High resolution monochromators (SGM, PGM): E/ Δ E ~10,000 obtainable. e.g. at 300 eV, Δ E= 0.03 eV

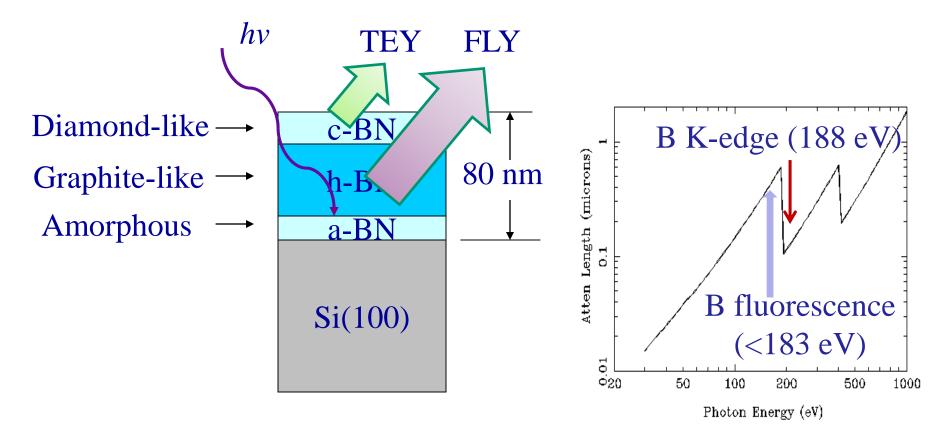

Chemical and site specificity; depth profile

Soft x-ray spectroscopy: unique features

- Yield spectroscopy
 - Electron yield (total, partial- surface sensitive)
 - X-ray fluorescence yield (total, selected wavelength -bulk sensitive)
 - Photoluminescence yield (visible, UV- site specific)
 - XEOL (X-ray excited optical luminescence)
 - TR-XEOL (Time-resolved)
- High energy and spatial resolution
- Excitation of shallow core levels The near-edge region (XANES/ NEXAFS) is the focus of interest in low z elements and shallow cores

Soft X-ray attenuation


Ti K-edge

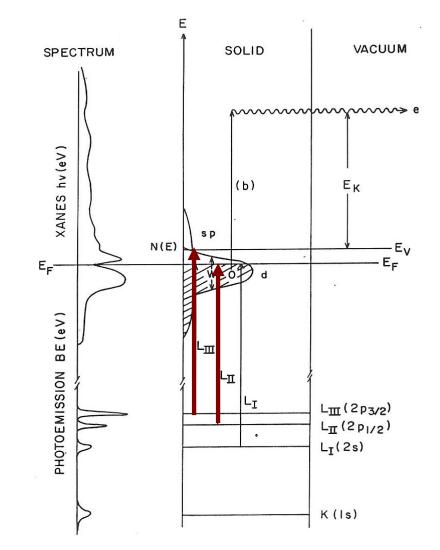

Ti *M*-edge

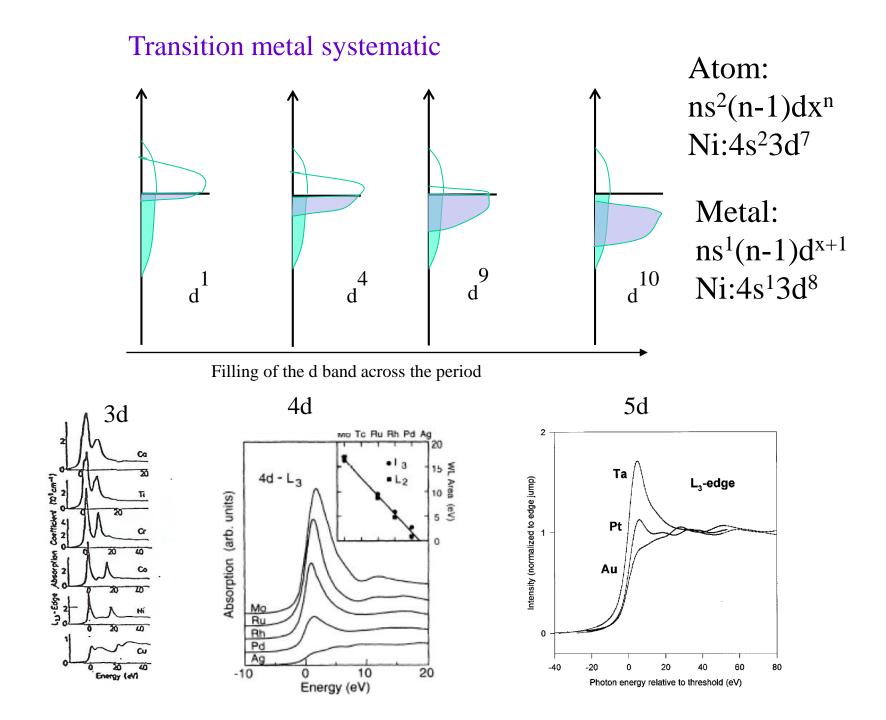
Source: CXRO

Surface sensitivity & electron attenuation length

The Interplay of TEY and FLY @ B K-edge

Cubic BN film grown on Si(100) wafer ? Texture of the h-BN underlayer (film)?




Probing d band metals

3d, 4d and 5d

d – band metals

The dipole selection rule allows for the probing of the unoccupied densities of states (DOS) of *d* character from the 2p and 3p levels – $M_{3,2}$ and $L_{3,2}$ -edge **XANES** analysis (relevance: catalysis)

L_{3,2}/M_{3,2} Whiteline and unoccupied densities of d states

- 3d metal: the L-edge WL for early 3d metals is most complex due to the proximity of the L₃,L₂ edges as well as crystal field effect; the 3d spin-orbit is negligible
- 4d metals: the L_3, L_2 edges are further apart, WL intensity is a good measure of 4d hole population
- 5 d metals: The L_3 and L_2 are well separated but the spin orbit splitting of the 5d orbital becomes important, j is a better quantum number than *l*, WL intensity is a good measure of $d_{5/2}$ and $d_{3/2}$ hole populations

3d metals

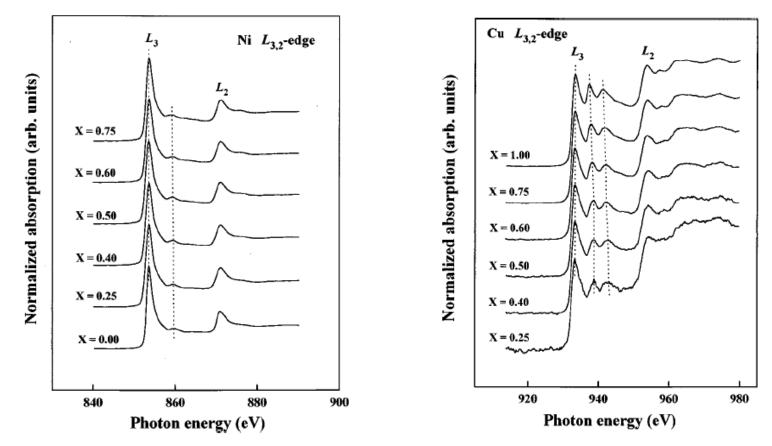
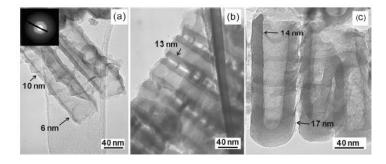
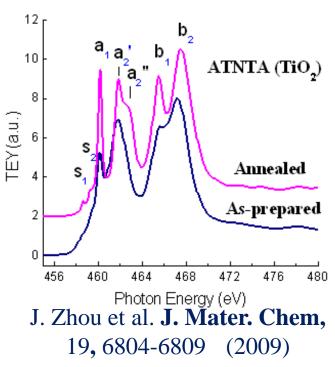
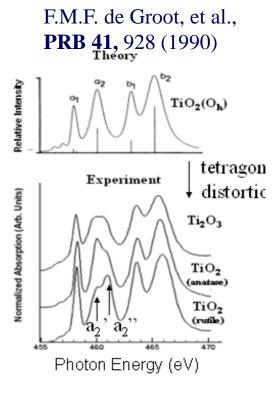
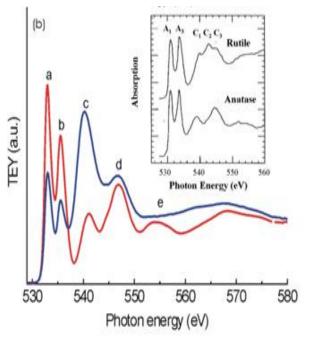



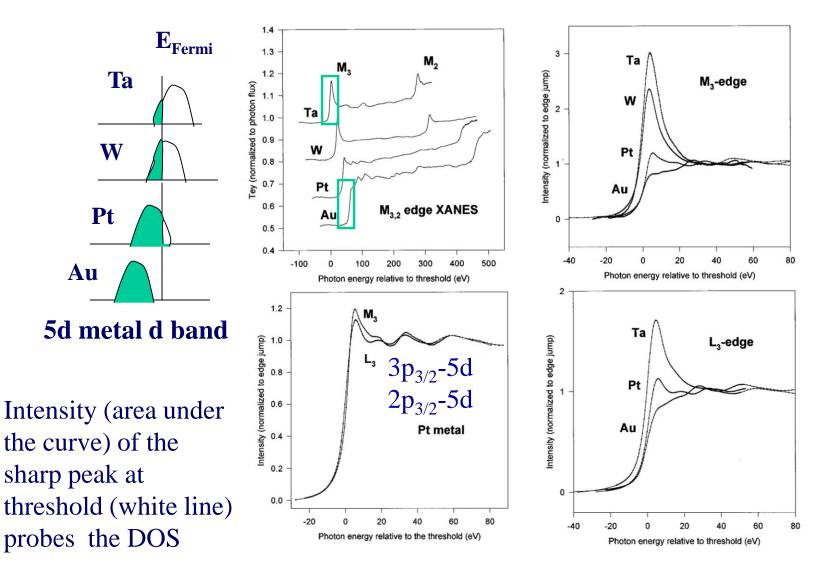
FIG. 2. Normalized Ni $L_{3,2}$ -edge x-ray-absorption spectra Ni-Cu alloys and pure Ni metal at room temperature.

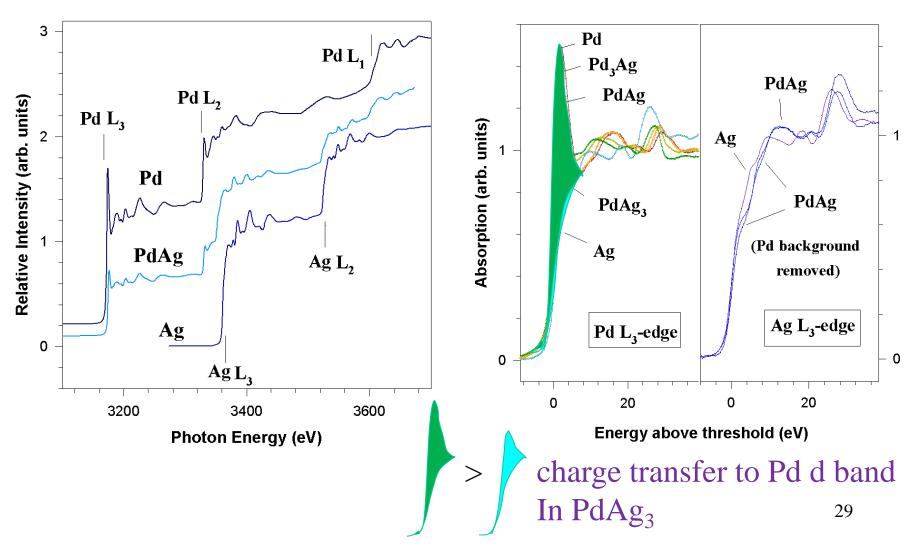

Hsieh et al Phys. Rev. B 57, 15204 (1998)


FIG. 3. Normalized Cu $L_{3,2}$ -edge x-ray-absorption spectra of Cu alloys and pure Cu metal at room temperature.

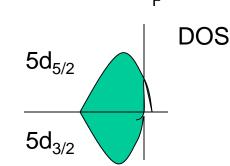

3d compounds: TiO₂ Nanotube

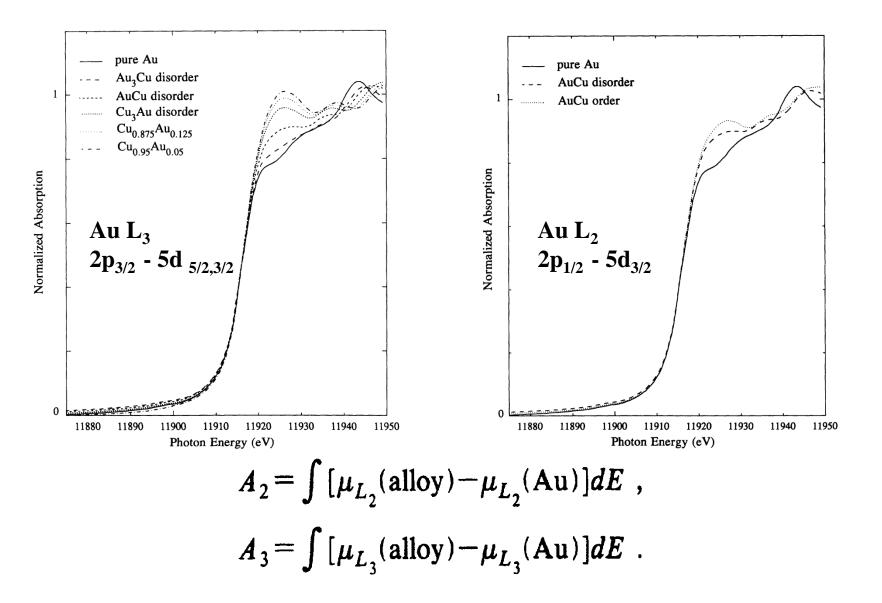
H. Fang et al. Nanotechnology (2009)




27

d- band filling across 4d and 5d row


d - charge redistribution in 4d metals


Ag \rightarrow Pd 4d charge transfer upon alloying

Analysis of d hole in Au and Pt metal In 5 d metals with a nearly filled/full d band such as Pt and Au, respectively, spin orbit coupling is large so $d_{5/2}$ and $d_{3/2}$ holes population is not the same E_F

Selection rule: dipole, Pt $\Delta l = \pm 1, \Delta j = \pm 1, 0$ $L_3, 2p_{3/2} \rightarrow 5d_{5/2.3/2}$ $L_2, 2p_{1/2} \rightarrow 5d_{3/2}$

Following Mattheiss and Dietz and assuming there is no countervailing symmetry arguments, expressions relating the area under the white line (A) to hole counts (Δh , where Δ means with respect to pure Au) are given by

$$A_{2} = C_{0}N_{0}E_{2}(R_{d}^{2p_{1/2}})^{2}(\frac{1}{3}\Delta h_{3/2}),$$

$$A_{3} = C_{0}N_{0}E_{3}(R_{d}^{2p_{3/2}})^{2}\left[\frac{6\Delta h_{5/2} + \Delta h_{3/2}}{15}\right]$$

where $C_0 = 4\pi^2 \alpha/3$ (α is the fine-structure constant), N_0 is the density of Au atoms, $E_{2,3}$ are the absorption edge energies, and the R term is the radial dipole integral. If,

* Phys. Rev. B22, 1663 (1980)

De-excitation spectroscopy I (Auger)

Core hole decays via two competing channels

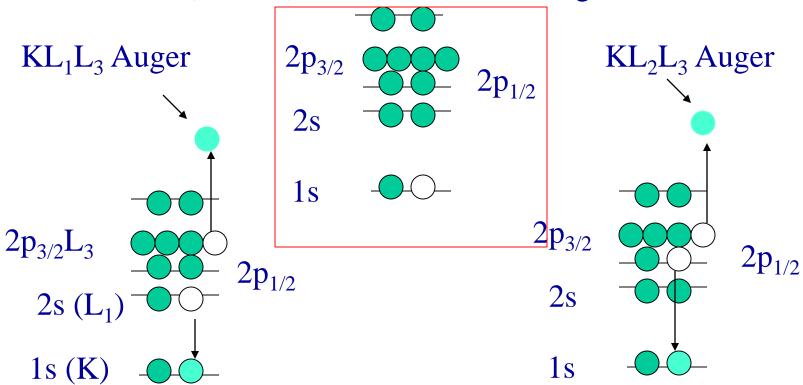
• Auger

normal (*hv* > threshold) Coster- Kronig (hole and e from same shell) Resonant Auger (*hv*~ threshold)

• Fluorescence X-ray

normal (*hv* > threshold)

XES (x-ray emission, valence e)


RIXS (resonant inelastic x-ray scattering,

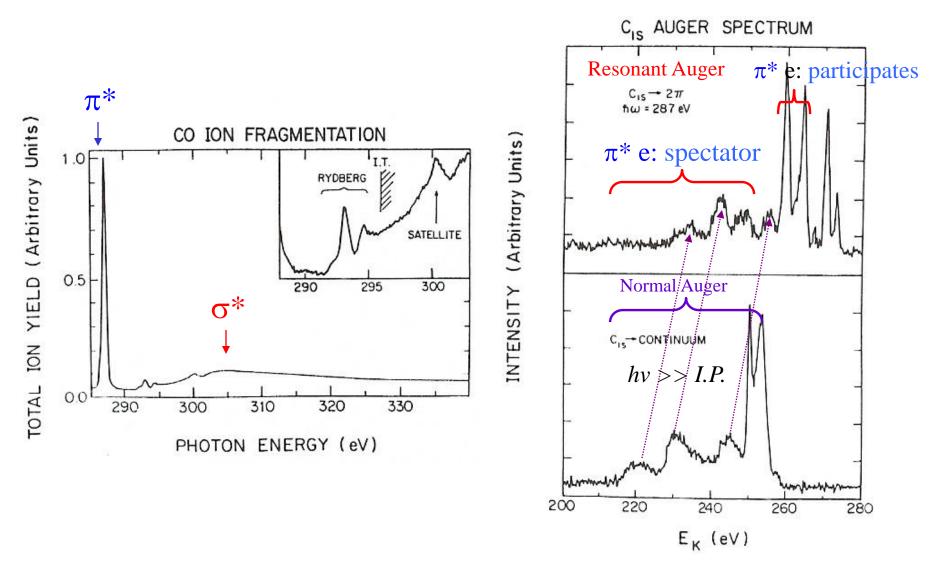
hv ~ threshold), RXES (resonant XES)

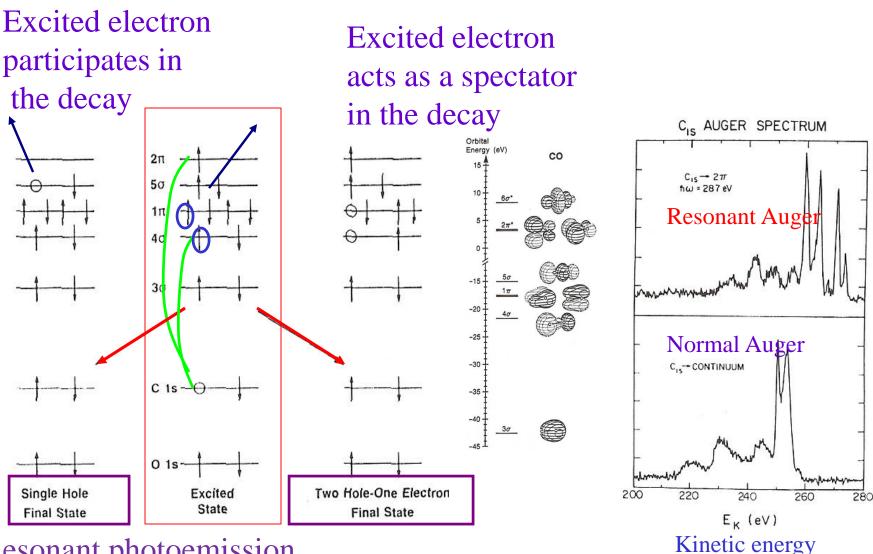
• Other secondary processes, **fragmentation**/defect creation, luminescence, etc.

Auger nomenclature

1s (K shell) core hole, normal Auger

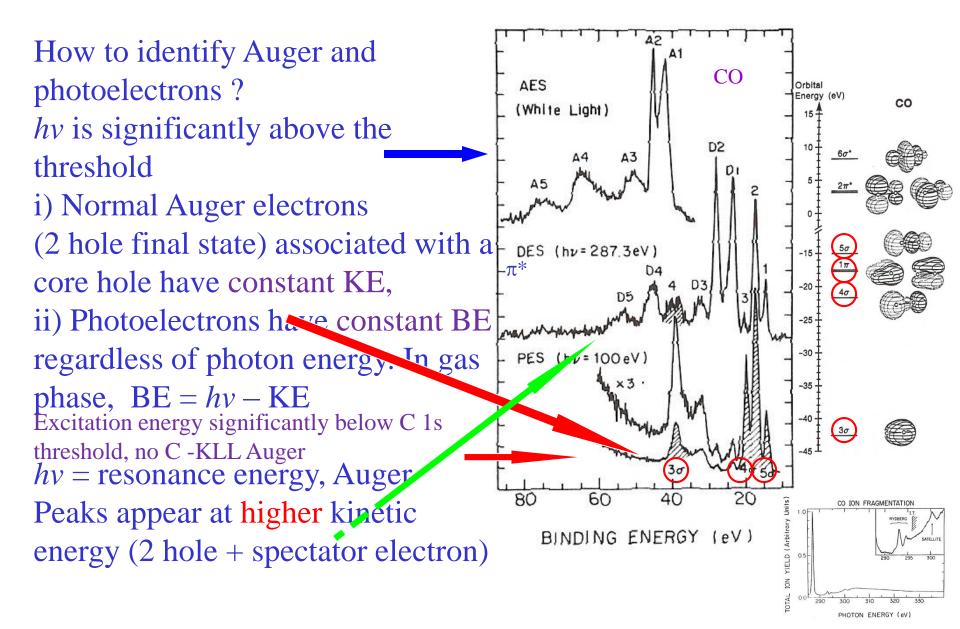
In general, Auger involving n = 2 electrons to fill the 1s hole are called KLL Auger electrons ; selection rule: coulombic In low z elements, Auger is the dominant decay channel; it determines the life time of the corehole; i.e. that the shorter the lifetime, the broader the peak (Uncertainty Principle). 34

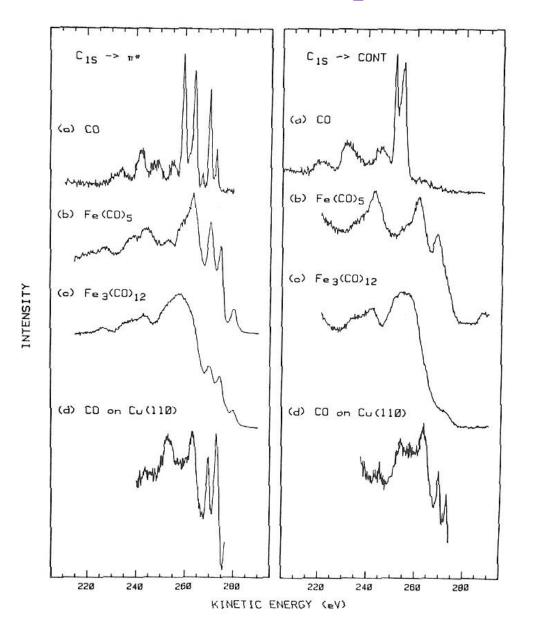

Auger nomenclature


2s (L₁) core hole, filled by other L subshell \rightarrow Coster Kronig

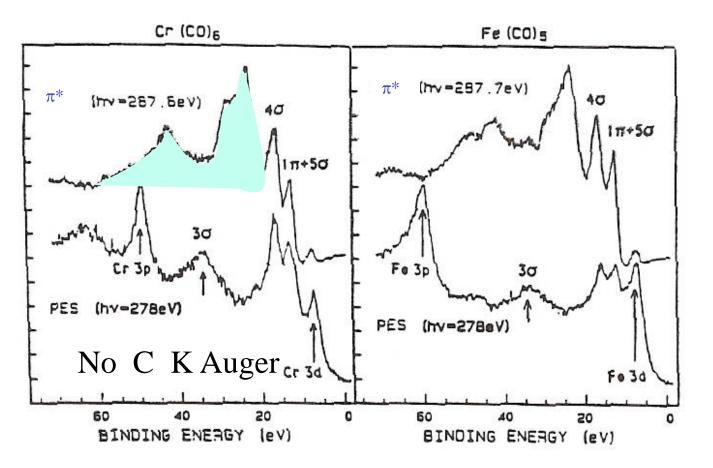
Auger process involving 2 electrons from the shell with the same quantum number n are called Coster-Kronig transitions; CK transitions are fast; it leads to short life time of the corehole. KE (Auger) = BE (1s) - BE (L) - BE(L') - V(2 hole state) ³⁵

Auger in molecular systems




Resonant photoemission

Note: corresponding normal Auger has a two hole final state without the excited electron acting as the spectator


Auger electrons excited at resonance

Other examples

Resonant Photoelectron and Auger spectroscopy

XPS of VB at π^* resonance, resonant Auger turns on

XPS of VB below π^* resonance, no C K-edge Auger

Resonance in NXAFS/XANES

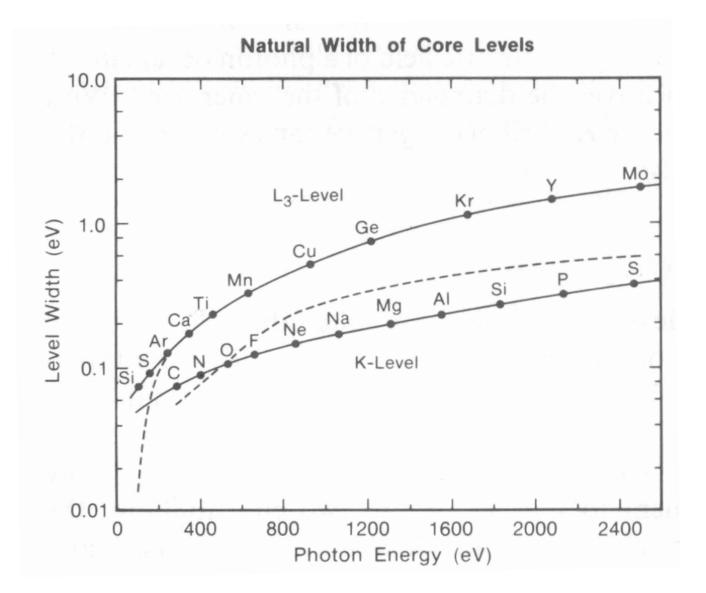
(bound to bound transitions)

Peak position (E): atomic one-electron energy of the core level modified by chemical environment, to LUMO, LUMO+ transition

e.g. oxidation state, electronegativity etc.

Peak width (Γ): convolution of core hole lifetime (uncertainty principle), and instrumentation resolution, ΔEI

Line width at


41

half maximum

$$\Delta x \cdot \Delta p = \Delta t \cdot \Delta E_{\tau} \ge \frac{\hbar}{2} \qquad \qquad \Gamma = \sqrt{\Delta E_{\tau}^{2} + \Delta E_{I}^{2}} \quad \Box$$

Lifetime of core hole, τ ; lifetime broadening Peaks intensity (I): (area under the curve) transition matrix element and the occupancy densities of states $|\langle i|r|f \rangle|^2$ of the final states ρ (E)

Note: in classical theory, the peak intensity is also referred to as oscillator's strength

J Stöhr, NEXAFS Spectroscopy

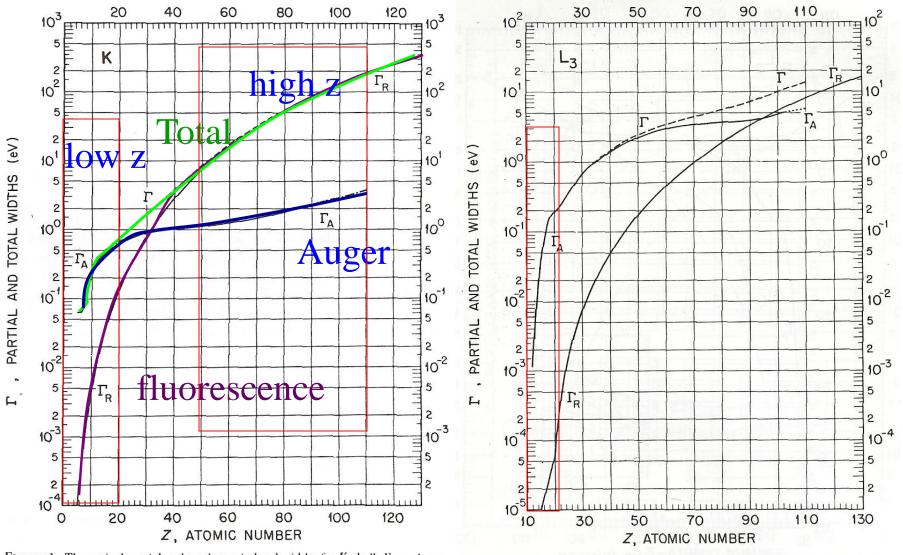
Resonance in NXAFS/XANES (bound to quasi bound transitions)

Peak position (E): atomic one-electron energy of the core level modified by chemical environment to MS state e.g. qualitatively to semi-quantitatively, inter-atomic distance Peak width (Γ): convolution of core hole lifetime -(uncertainty principle), band width, instrumentation resolution, ΔE_{τ} , ΔE_{f} and ΔE_{I} Peaks intensity (I): (area under the curve) transition matrix element $|\langle i|r|f \rangle|^{2}$ and the occupancy densities of states of the final states ρ (E)

$$\Gamma = \sqrt{\Delta E_{\tau}^2 + \Delta E_f^2 + \Delta E_I^2}$$

43

Core hole life time and widths (radiative, X-ray and Auger)



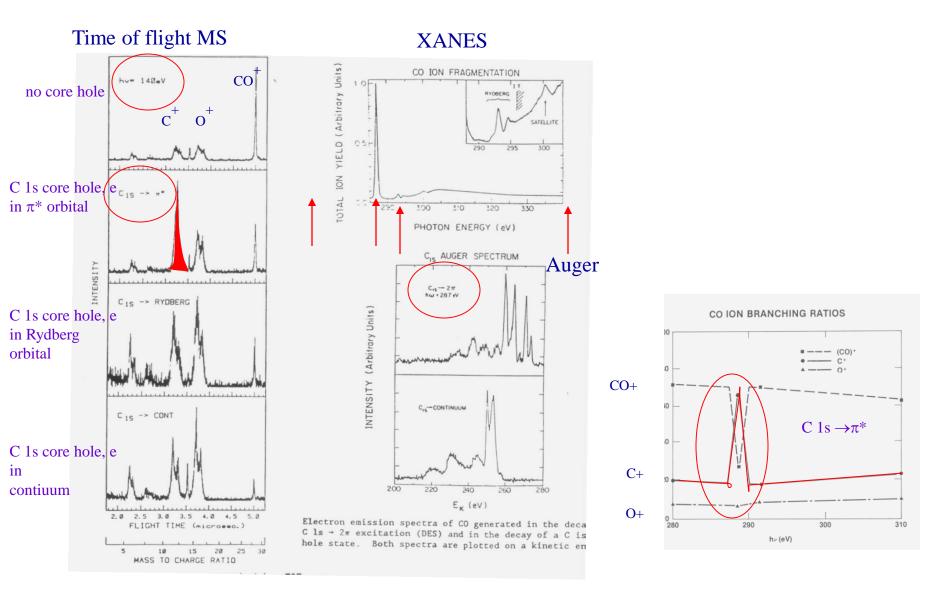
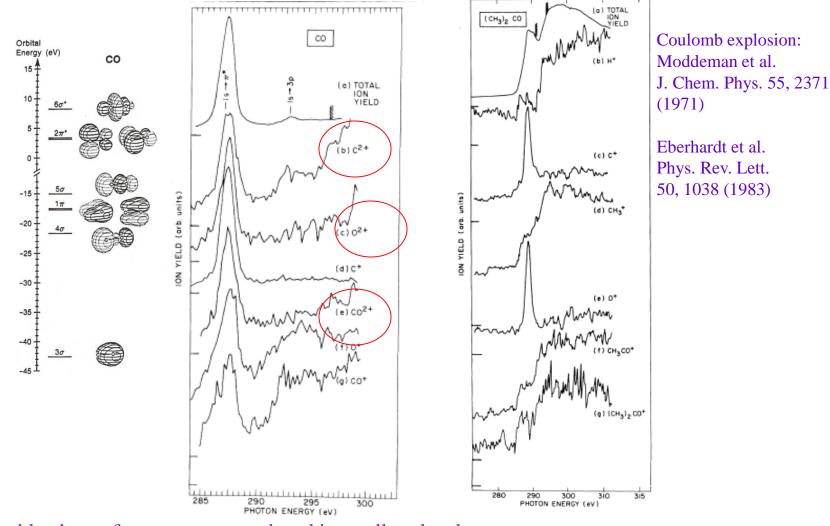

FIGURE 1. Theoretical partial and total atomic level widths for K shell. Γ_{Λ} = Auger width, Γ_{R} = radiative width, Γ = total width. Dot-dash curve represents semi-empirical Γ_{Λ} curve obtained from adopted ω_{K} values and theoretical Γ_{R} curve: $\omega_{K}\Gamma_{\Lambda} = (1 - \omega_{K})\Gamma_{R}$.

FIGURE 4. Theoretical partial and total atomic level widths for L_3 subshell. $\Gamma_A =$ Auger width, $\Gamma_R =$ radiative width, $\Gamma \approx$ total width.


Photo-fragmentation of molecules

- One of the more interesting consequence of core hole decay is the fragmentation of molecules (radiation chemistry, radiation damage)
- Photo-excitation at selected edges and resonances can lead to *site specific* photofragmentation of molecules (photon scalpel)

Ion and Auger yield of CO on and off resonance

Photo-fragmentation of CO and (CH₃)₂CO at C K-edge

Doubly charge fragments are produced in small molecules